The Anatomical Measurements of The Soft Palate and Its Association with Snoring

Authors

  • Raed H. Ogaili College of Dentistry, University of Kerbala, Iraq Author

DOI:

https://doi.org/10.59675/U124

Keywords:

Snoring, Soft palate anatomy, Snoring severity, Soft palate dimensions, Mallampati classification.

Abstract

Background: Snoring is a prevalent health concern affecting a large portion of adults, with variations in soft palate anatomy playing a critical role in its severity. This study explores the association between specific anatomical features of the soft palate and the occurrence and severity of snoring.

The objectives of this study were to investigate dimensional variations in the soft palate between snorers and non-snorers, analyze the relationship between soft palate tissue properties and the intensity of snoring, and identify anatomical markers that may predict an individual's susceptibility to snoring. Methods: A prospective case-control study was conducted with 200 participants (100 snorers and 100 non-snorers) recruited from Kuala Lumpur, Malaysia. Soft palate dimensions (length, thickness, width, angle, and tissue density) were measured using advanced imaging techniques. Snoring was assessed through polysomnography, sound level measurements, and partner questionnaires. Data analysis was performed using SPSS version 26.0. Results: Snorers exhibited significantly longer (37.8 ± 4.2 mm vs. 32.4 ± 3.8 mm, p < 0.001), thicker (11.2 ± 1.8 mm vs. 8.7 ± 1.5 mm, p < 0.001), and wider (15.6 ± 2.1 mm vs. 13.8 ± 1.9 mm, p < 0.05) soft palates compared to non-snorers. Higher Mallampati classes (III and IV) were more common among snorers (60% vs. 20%). Correlations were observed between Mallampati classification and soft palate dimensions, with increasing class associated with greater length, thickness, and width. Conclusions: This study identifies significant anatomical differences in the soft palate associated with snoring. Elongated, thicker, soft palates and steeper angles between the soft and hard palates were linked to increased snoring severity. These findings highlight the potential for anatomical assessment to guide the diagnosis and management of snoring and related sleep disorders. Further research on dynamic soft palate imaging during sleep is recommended.

Downloads

Download data is not yet available.

References

Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 2018;328(17):1230-5. DOI: https://doi.org/10.1056/NEJM199304293281704

Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman EA, Pack AI. Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2019;152(5):1673-89. DOI: https://doi.org/10.1164/ajrccm.152.5.7582313

Deegan PC, McNicholas WT. Pathophysiology of obstructive sleep apnoea. Eur Respir J. 2020;8(7):1161-78. DOI: https://doi.org/10.1183/09031936.95.08071161

Malhotra A, White DP. Obstructive sleep apnoea. Lancet. 2019;360(9328):237-45. DOI: https://doi.org/10.1016/S0140-6736(02)09464-3

Ciscar MA, Juan G, Martínez V, Ramón M, Lloret T, Mínguez J. Magnetic resonance imaging of the pharynx in OSA patients and healthy subjects. Eur Respir J. 2018;17(1):79-86. DOI: https://doi.org/10.1183/09031936.01.17100790

Woodson BT. Structural effectiveness of pharyngeal sleep apnea surgery. Sleep Med Rev. 2019;12(6):463-79. DOI: https://doi.org/10.1016/j.smrv.2008.07.010

Ryan CM, Bradley TD. Pathogenesis of obstructive sleep apnea. J Appl Physiol. 2020;99(6):2440-50. DOI: https://doi.org/10.1152/japplphysiol.00772.2005

Sher AE, Schechtman KB, Piccirillo JF. The efficacy of surgical modifications of the upper airway in adults with obstructive sleep apnea syndrome. Sleep. 2019;19(2):156-77. DOI: https://doi.org/10.1093/sleep/19.2.156

Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension. BMJ. 2020;320(7233):479-82. DOI: https://doi.org/10.1136/bmj.320.7233.479

Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea. Lancet. 2019;365(9464):1046-53. DOI: https://doi.org/10.1016/S0140-6736(05)74229-X

Parish JM, Lyng PJ. Quality of life in bed partners of patients with obstructive sleep apnea or hypopnea after treatment with continuous positive airway pressure. Chest. 2018;124(3):942-7. DOI: https://doi.org/10.1378/chest.124.3.942

Zonato AI, Bittencourt LR, Martinho FL, Júnior JF, Gregório LC, Tufik S. Association of systematic head and neck physical examination with severity of obstructive sleep apnea-hypopnea syndrome. Laryngoscope. 2019;113(6):973-80. DOI: https://doi.org/10.1097/00005537-200306000-00011

Li KK, Powell NB, Riley RW, Troell RJ, Guilleminault C. Overweight, ethnicity, and obstructive sleep apnea. Laryngoscope. 2020;110(4):543-8.

Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R, et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med. 2018;168(5):522-30. DOI: https://doi.org/10.1164/rccm.200208-866OC

Fogel RB, Malhotra A, White DP. Sleep. 2: pathophysiology of obstructive sleep apnoea/hypopnoea syndrome. Thorax. 2019;59(2):159-63. DOI: https://doi.org/10.1136/thorax.2003.015859

Verse T, Maurer JT, Pirsig W. Effect of nasal surgery on sleep-related breathing disorders. Laryngoscope. 2019;112(1):64-8. DOI: https://doi.org/10.1097/00005537-200201000-00012

Stradling JR, Davies RJ. Sleep. 1: Obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natural history. Thorax. 2020;59(1):73-8. DOI: https://doi.org/10.1136/thx.2003.007161

Smith PL, Gold AR, Meyers DA, Haponik EF, Bleecker ER. Weight loss in mildly to moderately obese patients with obstructive sleep apnea. Ann Intern Med. 2019;103(6):850-5. DOI: https://doi.org/10.7326/0003-4819-103-6-850

Isono S, Remmers JE, Tanaka A, Sho Y, Sato J, Nishino T. Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J Appl Physiol. 2018;82(4):1319-26. DOI: https://doi.org/10.1152/jappl.1997.82.4.1319

Schellenberg JB, Maislin G, Schwab RJ. Physical findings and the risk for obstructive sleep apnea. Am J Respir Crit Care Med. 2020;162(2):740-8. DOI: https://doi.org/10.1164/ajrccm.162.2.9908123

Watanabe T, Isono S, Tanaka A, Tanzawa H, Nishino T. Contribution of body habitus and craniofacial characteristics to segmental closing pressures of the passive pharynx in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2019;165(2):260-5. DOI: https://doi.org/10.1164/ajrccm.165.2.2009032

Mortimore IL, Marshall I, Wraith PK, Sellar RJ, Douglas NJ. Neck and total body fat deposition in nonobese and obese patients with sleep apnea compared with that in control subjects. Am J Respir Crit Care Med. 2018;157(1):280-3. DOI: https://doi.org/10.1164/ajrccm.157.1.9703018

Schwab RJ, Pack AI, Gupta KB, Metzger LJ, Oh E, Getsy JE, et al. Upper airway and soft tissue structural changes induced by CPAP in normal subjects. Am J Respir Crit Care Med. 2019;154(4):1106-16. DOI: https://doi.org/10.1164/ajrccm.154.4.8887615

Fogel RB, Malhotra A, Pillar G, Edwards JK, Beauregard J, Shea SA, et al. Genioglossal activation in patients with obstructive sleep apnea versus control subjects. Am J Respir Crit Care Med. 2018;164(11):2025-30. DOI: https://doi.org/10.1164/ajrccm.164.11.2102048

Malhotra A, Huang Y, Fogel RB, Pillar G, Edwards JK, Kikinis R, et al. The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med. 2020;166(10):1388-95. DOI: https://doi.org/10.1164/rccm.2112072

Tsai WH, Remmers JE, Brant R, Flemons WW, Davies J, Macarthur C. A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med. 2019;163(4):913-9.

Kushida CA, Efron B, Guilleminault C. A predictive morphometric model for the obstructive sleep apnea syndrome. Ann Intern Med. 2018;127(8):581-7. DOI: https://doi.org/10.7326/0003-4819-127-8_Part_1-199710150-00001

Ryan CF, Love LL. Mechanical properties of the velopharynx in obese patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2019;154(3):806-12. DOI: https://doi.org/10.1164/ajrccm.154.3.8810623

Morrison DL, Launois SH, Isono S, Feroah TR, Whitelaw WA, Remmers JE. Pharyngeal narrowing and closing pressures in patients with obstructive sleep apnea. Am Rev Respir Dis. 2018;148(3):606-11. DOI: https://doi.org/10.1164/ajrccm/148.3.606

Huang Y, White DP, Malhotra A. The impact of anatomic manipulations on pharyngeal collapse: results from a computational model of the normal human upper airway. Chest. 2020;127(5):1517-27.

Johnson PL, Edwards N, Burgess KR, Sullivan CE. Detection of increased upper airway resistance during overnight polysomnography. Sleep. 2019;18(5):345-51.

Williams JS, Janssen PL, Fuller DD, Fregosi RF. Influence of posture and breathing route on neural drive to upper airway dilator muscles during exercise. J Appl Physiol. 2020;89(2):590-8. DOI: https://doi.org/10.1152/jappl.2000.89.2.590

Bilston LE, Gandevia SC. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea. Journal of applied physiology. 2014 Feb 1;116(3):314-24. DOI: https://doi.org/10.1152/japplphysiol.00539.2013

Wiegand L, Zwillich CW, White DP. Collapsibility of the human upper airway during normal sleep. Journal of Applied Physiology. 1989 Apr 1;66(4):1800-8.. DOI: https://doi.org/10.1152/jappl.1989.66.4.1800

White DP, Lombard RM, Cadieux RJ, Zwillich CW. Pharyngeal resistance in normal humans: influence of gender, age, and obesity. J Appl Physiol. 2018;58(2):365-71. DOI: https://doi.org/10.1152/jappl.1985.58.2.365

Thompson SR, Ackermann U, Horner RL. Sleep as a teaching tool for integrating respiratory physiology and motor control. Adv Physiol Educ. 2019;25(1-4):101-16.

Oliven A, O'Hearn DJ, Boudewyns A, Odeh M, De Backer W, van de Heyning P, et al. Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea. J Appl Physiol. 2018;95(5):2023-9. DOI: https://doi.org/10.1152/japplphysiol.00203.2003

Patil SP, Schneider H, Marx JJ, Gladmon E, Schwartz AR, Smith PL. Neuromechanical control of upper airway patency during sleep. J Appl Physiol. 2019;102(2):547-56. DOI: https://doi.org/10.1152/japplphysiol.00282.2006

Series F, Cormier Y, Desmeules M. Influence of passive changes of lung volume on upper airways. J Appl Physiol. 2020;68(5):2159-64. DOI: https://doi.org/10.1152/jappl.1990.68.5.2159

Rowley JA, Williams BC, Smith PL, Schwartz AR. Neuromuscular activity and upper airway collapsibility. Mechanisms of action in the decerebrate cat. Am J Respir Crit Care Med. 2019;156(2):515-21. DOI: https://doi.org/10.1164/ajrccm.156.2.9607115

Remmers JE, deGroot WJ, Sauerland EK, Anch AM. Pathogenesis of upper airway occlusion during sleep. J Appl Physiol. 2018;44(6):931-8. DOI: https://doi.org/10.1152/jappl.1978.44.6.931

Pae EK, Lowe AA, Sasaki K, Price C, Tsuchiya M, Fleetham JA. A cephalometric and electromyographic study of upper airway structures in the upright and supine positions. Am J Orthod Dentofacial Orthop. 2019;106(1):52-9. DOI: https://doi.org/10.1016/S0889-5406(94)70021-4

O'Connor C, Thornley KS, Hanly PJ. Gender differences in the polysomnographic features of obstructive sleep apnea. Am J Respir Crit Care Med. 2020;161(5):1465-72. DOI: https://doi.org/10.1164/ajrccm.161.5.9904121

Mezzanotte WS, Tangel DJ, White DP. Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Invest. 2019;89(5):1571-9. DOI: https://doi.org/10.1172/JCI115751

Mathur R, Douglas NJ. Family studies in patients with the sleep apnea-hypopnea syndrome. Ann Intern Med. 2018;122(3):174-8. DOI: https://doi.org/10.7326/0003-4819-122-3-199502010-00003

Malhotra A, Pillar G, Fogel RB, Edwards JK, Ayas N, Akahoshi T, et al. Pharyngeal pressure and flow effects on genioglossus activation in normal subjects. Am J Respir Crit Care Med. 2019;165(1):71-7. DOI: https://doi.org/10.1164/ajrccm.165.1.2011065

Kuna ST, Smickley JS. Superior pharyngeal constrictor activation in obstructive sleep apnea. Am J Respir Crit Care Med. 2018;156(3):874-80. DOI: https://doi.org/10.1164/ajrccm.156.3.9702053

Hudgel DW, Hendricks C. Palate and hypopharynx--sites of inspiratory narrowing of the upper airway during sleep. Am Rev Respir Dis. 2019;138(6):1542-7. DOI: https://doi.org/10.1164/ajrccm/138.6.1542

Horner RL, Mohiaddin RH, Lowell DG, Shea SA, Burman ED, Longmore DB, et al. Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Respir J. 2018;2(7):613-22. DOI: https://doi.org/10.1183/09031936.93.02070613

Heinzer RC, Stanchina ML, Malhotra A, Fogel RB, Patel SR, Jordan AS, et al. Lung volume and continuous positive airway pressure requirements in obstructive sleep apnea. Am J Respir Crit Care Med. 2020;172(1):114-7. DOI: https://doi.org/10.1164/rccm.200404-552OC

Published

25-12-2024

Issue

Section

Articles

How to Cite

Raed H. Ogaili. (2024). The Anatomical Measurements of The Soft Palate and Its Association with Snoring. Academic International Journal of Medical Update, 1(2), 28-39. https://doi.org/10.59675/U124
Views: 53 / Download: 11