The Anatomical Measurements of The Soft Palate and Its Association with Snoring
DOI:
https://doi.org/10.59675/U124Keywords:
Snoring, Soft palate anatomy, Snoring severity, Soft palate dimensions, Mallampati classification.Abstract
Background: Snoring is a prevalent health concern affecting a large portion of adults, with variations in soft palate anatomy playing a critical role in its severity. This study explores the association between specific anatomical features of the soft palate and the occurrence and severity of snoring.
The objectives of this study were to investigate dimensional variations in the soft palate between snorers and non-snorers, analyze the relationship between soft palate tissue properties and the intensity of snoring, and identify anatomical markers that may predict an individual's susceptibility to snoring. Methods: A prospective case-control study was conducted with 200 participants (100 snorers and 100 non-snorers) recruited from Kuala Lumpur, Malaysia. Soft palate dimensions (length, thickness, width, angle, and tissue density) were measured using advanced imaging techniques. Snoring was assessed through polysomnography, sound level measurements, and partner questionnaires. Data analysis was performed using SPSS version 26.0. Results: Snorers exhibited significantly longer (37.8 ± 4.2 mm vs. 32.4 ± 3.8 mm, p < 0.001), thicker (11.2 ± 1.8 mm vs. 8.7 ± 1.5 mm, p < 0.001), and wider (15.6 ± 2.1 mm vs. 13.8 ± 1.9 mm, p < 0.05) soft palates compared to non-snorers. Higher Mallampati classes (III and IV) were more common among snorers (60% vs. 20%). Correlations were observed between Mallampati classification and soft palate dimensions, with increasing class associated with greater length, thickness, and width. Conclusions: This study identifies significant anatomical differences in the soft palate associated with snoring. Elongated, thicker, soft palates and steeper angles between the soft and hard palates were linked to increased snoring severity. These findings highlight the potential for anatomical assessment to guide the diagnosis and management of snoring and related sleep disorders. Further research on dynamic soft palate imaging during sleep is recommended.
Downloads
References
Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 2018;328(17):1230-5. DOI: https://doi.org/10.1056/NEJM199304293281704
Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman EA, Pack AI. Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2019;152(5):1673-89. DOI: https://doi.org/10.1164/ajrccm.152.5.7582313
Deegan PC, McNicholas WT. Pathophysiology of obstructive sleep apnoea. Eur Respir J. 2020;8(7):1161-78. DOI: https://doi.org/10.1183/09031936.95.08071161
Malhotra A, White DP. Obstructive sleep apnoea. Lancet. 2019;360(9328):237-45. DOI: https://doi.org/10.1016/S0140-6736(02)09464-3
Ciscar MA, Juan G, Martínez V, Ramón M, Lloret T, Mínguez J. Magnetic resonance imaging of the pharynx in OSA patients and healthy subjects. Eur Respir J. 2018;17(1):79-86. DOI: https://doi.org/10.1183/09031936.01.17100790
Woodson BT. Structural effectiveness of pharyngeal sleep apnea surgery. Sleep Med Rev. 2019;12(6):463-79. DOI: https://doi.org/10.1016/j.smrv.2008.07.010
Ryan CM, Bradley TD. Pathogenesis of obstructive sleep apnea. J Appl Physiol. 2020;99(6):2440-50. DOI: https://doi.org/10.1152/japplphysiol.00772.2005
Sher AE, Schechtman KB, Piccirillo JF. The efficacy of surgical modifications of the upper airway in adults with obstructive sleep apnea syndrome. Sleep. 2019;19(2):156-77. DOI: https://doi.org/10.1093/sleep/19.2.156
Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension. BMJ. 2020;320(7233):479-82. DOI: https://doi.org/10.1136/bmj.320.7233.479
Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea. Lancet. 2019;365(9464):1046-53. DOI: https://doi.org/10.1016/S0140-6736(05)74229-X
Parish JM, Lyng PJ. Quality of life in bed partners of patients with obstructive sleep apnea or hypopnea after treatment with continuous positive airway pressure. Chest. 2018;124(3):942-7. DOI: https://doi.org/10.1378/chest.124.3.942
Zonato AI, Bittencourt LR, Martinho FL, Júnior JF, Gregório LC, Tufik S. Association of systematic head and neck physical examination with severity of obstructive sleep apnea-hypopnea syndrome. Laryngoscope. 2019;113(6):973-80. DOI: https://doi.org/10.1097/00005537-200306000-00011
Li KK, Powell NB, Riley RW, Troell RJ, Guilleminault C. Overweight, ethnicity, and obstructive sleep apnea. Laryngoscope. 2020;110(4):543-8.
Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R, et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med. 2018;168(5):522-30. DOI: https://doi.org/10.1164/rccm.200208-866OC
Fogel RB, Malhotra A, White DP. Sleep. 2: pathophysiology of obstructive sleep apnoea/hypopnoea syndrome. Thorax. 2019;59(2):159-63. DOI: https://doi.org/10.1136/thorax.2003.015859
Verse T, Maurer JT, Pirsig W. Effect of nasal surgery on sleep-related breathing disorders. Laryngoscope. 2019;112(1):64-8. DOI: https://doi.org/10.1097/00005537-200201000-00012
Stradling JR, Davies RJ. Sleep. 1: Obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natural history. Thorax. 2020;59(1):73-8. DOI: https://doi.org/10.1136/thx.2003.007161
Smith PL, Gold AR, Meyers DA, Haponik EF, Bleecker ER. Weight loss in mildly to moderately obese patients with obstructive sleep apnea. Ann Intern Med. 2019;103(6):850-5. DOI: https://doi.org/10.7326/0003-4819-103-6-850
Isono S, Remmers JE, Tanaka A, Sho Y, Sato J, Nishino T. Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J Appl Physiol. 2018;82(4):1319-26. DOI: https://doi.org/10.1152/jappl.1997.82.4.1319
Schellenberg JB, Maislin G, Schwab RJ. Physical findings and the risk for obstructive sleep apnea. Am J Respir Crit Care Med. 2020;162(2):740-8. DOI: https://doi.org/10.1164/ajrccm.162.2.9908123
Watanabe T, Isono S, Tanaka A, Tanzawa H, Nishino T. Contribution of body habitus and craniofacial characteristics to segmental closing pressures of the passive pharynx in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2019;165(2):260-5. DOI: https://doi.org/10.1164/ajrccm.165.2.2009032
Mortimore IL, Marshall I, Wraith PK, Sellar RJ, Douglas NJ. Neck and total body fat deposition in nonobese and obese patients with sleep apnea compared with that in control subjects. Am J Respir Crit Care Med. 2018;157(1):280-3. DOI: https://doi.org/10.1164/ajrccm.157.1.9703018
Schwab RJ, Pack AI, Gupta KB, Metzger LJ, Oh E, Getsy JE, et al. Upper airway and soft tissue structural changes induced by CPAP in normal subjects. Am J Respir Crit Care Med. 2019;154(4):1106-16. DOI: https://doi.org/10.1164/ajrccm.154.4.8887615
Fogel RB, Malhotra A, Pillar G, Edwards JK, Beauregard J, Shea SA, et al. Genioglossal activation in patients with obstructive sleep apnea versus control subjects. Am J Respir Crit Care Med. 2018;164(11):2025-30. DOI: https://doi.org/10.1164/ajrccm.164.11.2102048
Malhotra A, Huang Y, Fogel RB, Pillar G, Edwards JK, Kikinis R, et al. The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med. 2020;166(10):1388-95. DOI: https://doi.org/10.1164/rccm.2112072
Tsai WH, Remmers JE, Brant R, Flemons WW, Davies J, Macarthur C. A decision rule for diagnostic testing in obstructive sleep apnea. Am J Respir Crit Care Med. 2019;163(4):913-9.
Kushida CA, Efron B, Guilleminault C. A predictive morphometric model for the obstructive sleep apnea syndrome. Ann Intern Med. 2018;127(8):581-7. DOI: https://doi.org/10.7326/0003-4819-127-8_Part_1-199710150-00001
Ryan CF, Love LL. Mechanical properties of the velopharynx in obese patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2019;154(3):806-12. DOI: https://doi.org/10.1164/ajrccm.154.3.8810623
Morrison DL, Launois SH, Isono S, Feroah TR, Whitelaw WA, Remmers JE. Pharyngeal narrowing and closing pressures in patients with obstructive sleep apnea. Am Rev Respir Dis. 2018;148(3):606-11. DOI: https://doi.org/10.1164/ajrccm/148.3.606
Huang Y, White DP, Malhotra A. The impact of anatomic manipulations on pharyngeal collapse: results from a computational model of the normal human upper airway. Chest. 2020;127(5):1517-27.
Johnson PL, Edwards N, Burgess KR, Sullivan CE. Detection of increased upper airway resistance during overnight polysomnography. Sleep. 2019;18(5):345-51.
Williams JS, Janssen PL, Fuller DD, Fregosi RF. Influence of posture and breathing route on neural drive to upper airway dilator muscles during exercise. J Appl Physiol. 2020;89(2):590-8. DOI: https://doi.org/10.1152/jappl.2000.89.2.590
Bilston LE, Gandevia SC. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea. Journal of applied physiology. 2014 Feb 1;116(3):314-24. DOI: https://doi.org/10.1152/japplphysiol.00539.2013
Wiegand L, Zwillich CW, White DP. Collapsibility of the human upper airway during normal sleep. Journal of Applied Physiology. 1989 Apr 1;66(4):1800-8.. DOI: https://doi.org/10.1152/jappl.1989.66.4.1800
White DP, Lombard RM, Cadieux RJ, Zwillich CW. Pharyngeal resistance in normal humans: influence of gender, age, and obesity. J Appl Physiol. 2018;58(2):365-71. DOI: https://doi.org/10.1152/jappl.1985.58.2.365
Thompson SR, Ackermann U, Horner RL. Sleep as a teaching tool for integrating respiratory physiology and motor control. Adv Physiol Educ. 2019;25(1-4):101-16.
Oliven A, O'Hearn DJ, Boudewyns A, Odeh M, De Backer W, van de Heyning P, et al. Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea. J Appl Physiol. 2018;95(5):2023-9. DOI: https://doi.org/10.1152/japplphysiol.00203.2003
Patil SP, Schneider H, Marx JJ, Gladmon E, Schwartz AR, Smith PL. Neuromechanical control of upper airway patency during sleep. J Appl Physiol. 2019;102(2):547-56. DOI: https://doi.org/10.1152/japplphysiol.00282.2006
Series F, Cormier Y, Desmeules M. Influence of passive changes of lung volume on upper airways. J Appl Physiol. 2020;68(5):2159-64. DOI: https://doi.org/10.1152/jappl.1990.68.5.2159
Rowley JA, Williams BC, Smith PL, Schwartz AR. Neuromuscular activity and upper airway collapsibility. Mechanisms of action in the decerebrate cat. Am J Respir Crit Care Med. 2019;156(2):515-21. DOI: https://doi.org/10.1164/ajrccm.156.2.9607115
Remmers JE, deGroot WJ, Sauerland EK, Anch AM. Pathogenesis of upper airway occlusion during sleep. J Appl Physiol. 2018;44(6):931-8. DOI: https://doi.org/10.1152/jappl.1978.44.6.931
Pae EK, Lowe AA, Sasaki K, Price C, Tsuchiya M, Fleetham JA. A cephalometric and electromyographic study of upper airway structures in the upright and supine positions. Am J Orthod Dentofacial Orthop. 2019;106(1):52-9. DOI: https://doi.org/10.1016/S0889-5406(94)70021-4
O'Connor C, Thornley KS, Hanly PJ. Gender differences in the polysomnographic features of obstructive sleep apnea. Am J Respir Crit Care Med. 2020;161(5):1465-72. DOI: https://doi.org/10.1164/ajrccm.161.5.9904121
Mezzanotte WS, Tangel DJ, White DP. Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Invest. 2019;89(5):1571-9. DOI: https://doi.org/10.1172/JCI115751
Mathur R, Douglas NJ. Family studies in patients with the sleep apnea-hypopnea syndrome. Ann Intern Med. 2018;122(3):174-8. DOI: https://doi.org/10.7326/0003-4819-122-3-199502010-00003
Malhotra A, Pillar G, Fogel RB, Edwards JK, Ayas N, Akahoshi T, et al. Pharyngeal pressure and flow effects on genioglossus activation in normal subjects. Am J Respir Crit Care Med. 2019;165(1):71-7. DOI: https://doi.org/10.1164/ajrccm.165.1.2011065
Kuna ST, Smickley JS. Superior pharyngeal constrictor activation in obstructive sleep apnea. Am J Respir Crit Care Med. 2018;156(3):874-80. DOI: https://doi.org/10.1164/ajrccm.156.3.9702053
Hudgel DW, Hendricks C. Palate and hypopharynx--sites of inspiratory narrowing of the upper airway during sleep. Am Rev Respir Dis. 2019;138(6):1542-7. DOI: https://doi.org/10.1164/ajrccm/138.6.1542
Horner RL, Mohiaddin RH, Lowell DG, Shea SA, Burman ED, Longmore DB, et al. Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Respir J. 2018;2(7):613-22. DOI: https://doi.org/10.1183/09031936.93.02070613
Heinzer RC, Stanchina ML, Malhotra A, Fogel RB, Patel SR, Jordan AS, et al. Lung volume and continuous positive airway pressure requirements in obstructive sleep apnea. Am J Respir Crit Care Med. 2020;172(1):114-7. DOI: https://doi.org/10.1164/rccm.200404-552OC
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Academic International Journal of Medical Update

This work is licensed under a Creative Commons Attribution 4.0 International License.